

    
      
          
            
  
Folktale —at a glance—

Folktale is a suite of libraries for generic functional programming in
JavaScript that allows you to write elegant modular applications with fewer
bugs, and more reuse.


Guides

	
	
	Getting Started

	A series of quick tutorials to get you up and running quickly with the
Folktale libraries.







	
	
	API reference

	A quick reference of Folktale’s libraries, including usage examples
and cross-references.













Indices and tables

	
	
	Global Module Index

	Quick access to all modules.





	
	General Index

	All functions, classes, terms, sections.







	
	
	Search page

	Search this documentation.













Other resources


	Licence information [http://creativecommons.org/licenses/by/4.0/]












          

      

      

    

  

    
      
          
            
  
Getting started

This guide will cover everything you need to start using the Folktale project
right away, from giving you a brief overview of the project, to installing it,
to creating a simple example. Once you get the hang of things, the
Folktale By Example guide should help you understanding
the concepts behind the library, and mapping them to real use cases.


So, what’s Folktale anyways?

Folktale is a suite of libraries for allowing a particular style of functional
programming in JavaScript. This style uses overtly generic abstractions to
provide the maximum amount of reuse, and composition, such that large projects
can be built in a manageable way by just gluing small projects together. Since
the concepts underneath the library are too generic, however, one might find it
difficult to see the applications of the data structures to the problems they
need to solve (which the Folktale By Example guide tries
to alleviate by using real world examples and use cases to motivate the
concepts). However, once these concepts are understood, you open up a world of
possibilities and abstractive power that is hard to find anywhere else.

The main goal of Folktale is to allow the development of robust, modular, and
reusable JavaScript components easier, by providing generic primitives and
powerful combinators.




Do I need to know advanced maths?

Short answer is no. You absolutely don’t need to know any sort of advanced
mathematics to use the Folktale libraries.

That said, most of the concepts used by the library are derived from Category
Theory, Algebra, and other fields in mathematics, so the if you want to
extrapolate from the common use cases, and create new abstractions, it will
help you tremendously to be familiar with these branches of mathematics.




Okay, how can I use it?

Good, let’s get down to the good parts!

Folktale uses a fairly modular structure, where each library is provided as a
separate package. To manage all of them, we use NPM [http://npmjs.org/]. If you’re already
using Node, you’re all set, just skip to the next section.

If you’re not using Node, you’ll need to install it so you can grab the
libraries. Don’t worry, installing Node is pretty easy:



	Go the the Node.js [http://nodejs.org/download/] download page.

	If you’re on Windows, grab the .msi installer. If you’re on Mac, grab the
.pkg installer.







Note

If you’re on Linux, the easiest way is to grab the Linux Binaries, extract
them to some folder, and place the node and npm binaries on your
$PATH

~ mkdir ~/Applications/node-js
~ cd ~/Applications/node-js
~ wget http://nodejs.org/dist/v0.10.24/node-v0.10.24-linux-x64.tar.gz
# or linux-x86.tar.gz, for 32bit architectures
~ tar -xzf node-.tar.gz
~ cd /usr/local/bin
~ sudo ln -s ~/Applications/node-js/node-v0.10.24-linux-x64/bin/node node
~ sudo ln -s ~/Applications/node-js/node-v0.10.24-linux-x64/bin/npm npm





On Ubuntu, you can also use Chris Lea’s PPA [https://launchpad.net/~chris-lea/+archive/node.js/].






Hello, world.

Now that you have Node, we can get down to actually using the library. For
this, let’s create a new directory where we’ll install the library:

~ mkdir ~/folktale-hello-world
~ cd ~/folktale-hello-world
~ npm install data.maybe





The npm install command will grab the library for you. In this case, the
library is data.maybe, which provides a data structure for modelling values
that might not exist (like nulls, but safer). It should only take a few seconds
to get everything installed, and if all goes well, you’ll have a
node_modules folder with all the stuff.

Now, run node to get dropped into a Read-Eval-Print-Loop [http://en.wikipedia.org/wiki/Read%E2%80%93eval%E2%80%93print_loop], which
will allow us to play around with the library interactively. Once in the REPL,
you can load the library:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22

	// We load the library by "require"-ing it
var Maybe = require('data.maybe')

// Returns Maybe.Just(x) if some `x` passes the predicate test
// Otherwise returns Maybe.Nothing()
function find(predicate, xs) {
  return xs.reduce(function(result, x) {
    return result.orElse(function() {
      return predicate(x)?    Maybe.Just(x)
      :      /* otherwise */  Maybe.Nothing()
    })
  }, Maybe.Nothing())
}


var numbers = [1, 2, 3, 4, 5]

var anyGreaterThan2 = find(function(a) { return a > 2 }, numbers)
// => Maybe.Just(3)

var anyGreaterThan8 = find(function(a) { return a > 8 }, numbers)
// => Maybe.Nothing










What about the Browser?

Running in the browser takes just a little bit more of effort. To do so, you’ll
first need the Browserify [http://browserify.org/] too, which converts modules using the Node
format, to something that the Browsers can use. Browserify is just an NPM
module, so it’s easy to get it:

$ npm install browserify





Since Browserify has quite a bit more of dependencies than our
data.maybe library, it’ll take a few seconds to fully install it. Once
you’ve got Browserify installed, you’ll want to create your module using the
Node format. So, create a hello.js with the following content:

	1
2
3
4
5
6

	// We load the data.maybe library, just like in Node
var Maybe = require('data.maybe')

Maybe.Just("Hello, world!").chain(function(value) {
  document.body.appendChild(document.createTextNode(value))
})







To compile this file with Browserify, you run the Browserify command giving the
file as input:

~ $(npm bin)/browserify hello.js > bundle.js





And finally, include the bundle.js file in your webpage:

<!DOCTYPE html>
<html>
  <head>
    <title>Hello, World</title>
  </head>
  <body>
    <script src="bundle.js"></script>
  </body>
</html>





By opening the page on your webbrowser, you should see Hello, World! added to
the page.




What else do I get?

Folktale is a large collection of base libraries, and still largely a work in
progress, but there’s a lot that is already done and can be used today!



	Safe optional value (replaces nullable types) with the Maybe structure.

	Disjunction type (commonly encodes errors) with the Either structure.

	Disjunction with failure aggregation with the Validation structure.

	Asynchronous values and computations with the Task structure.

	Common and useful combinators from Lambda Calculus.

	Common and useful monadic combinators.






Each of them are fairly broad concepts. The recommended way of getting familiar
with them is working through the Folktale By Example
guide, which will explain each concept through a series of real world use
cases.







          

      

      

    

  

    
      
          
            
  
Folktale by Example


Warning

This book is a work in progress!

This is largely a draft at this point, so if you see any problems, feel free
to file a ticket [https://github.com/folktale/folktale/issues]
and I’ll get to fixing it up asap.



Category Theory is a relatively new branch of mathematics with fairly abstract
concepts. Functional programming libraries use such concepts for maximising
their abstraction power and general usefulness, but it comes with a certain
drawback: most of the constructions provide little or no guidance for concrete
use cases. This is a problem in particular with newcomers to this style of
programming, who often find themselves lost, asking questions like “But why are
Monads useful?”

In this book, you will walk through concrete applications of concepts in
Category Theory, Abstract Algebra, and other branches of mathematics used by
functional programming, as well as concepts from functional programming
itself. By looking at concrete instances of these concepts, you can build a
mental framework for generalising and abstracting problems in a way that makes
your code more reusable, and more robust.


Note

Do note that this isn’t a book about Category Theory or any other
mathematical field, the concepts presented in this book are just influenced
by them.




Approach

People tend to have a fairly difficult time reasoning about abstractions, but
they can easily recognise concrete instances of those abstractions. With enough
examples, they can then build their own mental model of that abstraction and,
having that mental model, they’ll be able to apply that generalisation to find
other concrete instances of that abstractions on their own.

With that in mind, this book tries to present its readers with concrete
applications of a concept before discussing the concept itself. It does so by
presenting, at each chapter, a set of related problems, discussing concrete
solutions for those problems, and finally extrapolating to a general solution
that captures the pattern in those concrete solutions.




Who should read this book?

This book is aimed at intermediate and advanced JavaScript programmers who want
to take advantage of mathematical concepts to make their JavaScript code bases
simpler, more robust and reusable.

You’re expected to be comfortable not only with the syntax and basic concepts of
the JavaScript language, but also with concepts such as higher-order
programming, first-class functions, objects, prototypes, and
dynamic dispatch, which are going to be the basis for the concepts discussed
in this book. Non-JavaScript programmers familiar with those concepts might be
able to translate the concepts to their languages, with some work, but a
different book might be better suited for their needs.

To make the most out of this book, you’ll also need some school-level
mathematical reasoning skills, since the generalisation of the concepts will be
presented as mathematical laws. Properly understanding them will take some
knowledge of equality, substitutability and unification. Albert Y. C. Lai has
described the prerequisite mathematical skills [http://www.vex.net/~trebla/haskell/prerequisite.xhtml] for functional programming on
a web page.




How is this book organised?

The book is split into a few sections, each section starts with a description
its theme, prerequisites and motivation, spends a few chapters talking about
concrete examples inside that theme, and concludes with a summary of the
abstractions presented. Sections build on top of each other, so it might be
difficult to read the book in a non-linear way.

Section 1 discusses functions, and how composition can be used to build new
functionality from existing one easily, as well as how JavaScript function
affect composition in JS. It presents the core.lambda, core.arity and
core.operator libraries.

Section 2 discusses data structures and their transformations. It talks
about concepts such as Functors and recursion schemes such as
Catamorphisms. This section also gives a general idea of how sum types are
modelled in Folktale. It presents the data.maybe, data.either and
data.validation libraries.

Section 3 discusses advanced transformations of data structures. It talks
about concepts such as Applicative Functors and Monads. It presents new
facets of the libraries presented in Section 2.

Section 4 discusses approaches to asynchronous concurrency when dealing with
simple values. It revisits Monads, and talks about new concepts such as
Continuation-Passing style, Tasks, and Futures. It presents the
data.task library.

Section 5 discusses advanced approaches to dealing with multi-value
concurrency. It expands on Section 4 by presenting new concepts such as
back-pressure, Signals and Channels. It presents the data.channel and
data.signal libraries.

Section 6 discusses data validation and normalisation in more detail. It
presents the data.validation and core.check libraries.




Examples

The book contains a heavy amount of examples, all of which can be found in the
Folktale GitHub repository [https://github.com/folktale/folktale], under the docs/examples folder.




Table of Contents



	Section I: Composition











          

      

      

    

  

    
      
          
            
  
Section I: Composition


We are about to study the idea of a computational process. Computational
processes are abstract beings that inhabit computers. As they evolve,
processes manipulate other abstract things called data. The evolution of a
process is directed by a pattern of rules called a program. People create
programs to direct processes. In effect, we conjure the spirits of the
computer with our spells.


  
    
    
    API Reference
    
    

    
 
  
  

    
      
          
            
  
API Reference

Folktale is a suite of libraries for generic functional programming in
JavaScript. It allows the construction of elegant, and robust programs, with
highly reusable abstractions to keep the code base maintainable.

The library is organised by a variety of modules split into logical categories,
with the conventional naming of <Category>.<Module>. This page provides
reference documentation for all the modules in the Folktale library, including
usage examples and cross-references for helping you find related concepts that
might map better to a particular problem.


Core

Provides the most basic and essential building blocks and compositional
operations, which are likely to be used by most programs.


	
	core.arity

	Restricts the arity of variadic functions.





	
	core.check

	Run-time interface checking/contracts for JavaScript values.





	
	core.inspect

	Human-readable representations of built-in and custom objects.





	
	core.lambda

	Essential functional combinators and higher-order functions derived from
λ-Calculus.





	
	core.operators

	Curried and first-class versions of JavaScript built-in operators.













Control

Provides operations for control-flow.


	
	control.monads

	Common monadic combinators and sequencing operations.





	
	control.async

	Common operations for asynchronous control-flow with Data.Task.













Data

Provides functional (persistent and immutable) data structures for representing
program data.


	
	data.either

	Right-biased disjunctions. Commonly used for modelling computations that
may fail with additional information about the failure.





	
	data.maybe

	Safe optional values. Commonly used for modelling computations that may
fail, or values that might not be available.





	
	data.task

	A structure for capturing the effects of time-dependent values
(asynchronous computations, latency, etc.) with automatic resource
management.





	
	data.validation

	A disjunction for validating inputs and aggregating failures. Isomorphic
to Data.Either.
















          

      

      

    

  

  
    
    
    Module: core.arity
    
    

    
 
  
  

    
      
          
            
  
Module: core.arity





	Stability:	3 - Stable


	Bug Tracker:	https://github.com/folktale/core.arity/issues


	Version:	1.0.0


	Repository:	https://github.com/folktale/core.arity


	Portability:	Portable


	npm package:	core.arity





Restricts the arity of variadic functions.


Loading

Require the core.arity package, after installing it:

var arity = require('core.arity')








Why?

Since all functions in JavaScript are variadic, programmers often
take advantage of this fact by providing more arguments than what a function
takes, and the callee can just ignore them. With curried functions, calling
a binary function with three arguments ends up invoking the return value of
the function with the extra argument!

var curry = require('core.lambda').curry;

function add(a, b) {
  return a + b;
}

var cadd = curry(2, add);

cadd(1)(2)    // => 3
cadd(1, 2)    // => 3
cadd(1, 2, 4) // => Error: 3 is not a function





To fix this, one would need to wrap the curried function such that the
wrapper only passes two arguments to it, and ignores the additional ones:

var binary = require('core.arity').binary;

binary(cadd)(1, 2, 4) // => 3








Uncategorised


nullary()


	
core.arity.nullary(f)

	



	Returns:	A function that takes no arguments.





(α₁, α₂, ..., αₙ → β) → (Unit → β)





Restricts a variadic function to a nullary one.








unary()


	
core.arity.unary(f)

	



	Returns:	A function that takes one argument.





(α₁, α₂, ..., αₙ → β) → (α₁ → β)





Restricts a variadic function to an unary one.








binary()


	
core.arity.binary(f)

	



	Returns:	A function that takes two arguments.





(α₁, α₂, ..., αₙ → β) → (α₁ → α₂ → β)





Restricts a variadic function to a binary one.








ternary()


	
core.arity.ternary(f)

	



	Returns:	A function that takes three arguments.





(α₁, α₂, ..., αₙ → β) → (α₁ → α₂ → α₃ → β)





Restricts a variadic function to a ternary one.













          

      

      

    

  

  
    
    
    Module: core.check
    
    

    
 
  
  

    
      
          
            
  
Module: core.check





	Stability:	1 - Experimental


	Bug Tracker:	https://github.com/folktale/core.check/issues


	Version:	0.1.0


	Repository:	https://github.com/folktale/core.check


	Portability:	Portable


	npm package:	core.check





Interface checking for JS values.


Loading

Require the core.check package, after installing it:

var check = require('core.check')








Why?

JavaScript is an untyped language, and this makes it fairly flexible for
certain things. More often than not, however, you want to make sure that the
values going into a certain code path have some kind of structure, to reduce
the complexity of the whole program. core.check helps you to do this by
providing composable contracts:

	1
2
3
4
5

	check.assert(check.String(1))
// => Error: Expected 1 to have tag String

check.assert(check.Or([check.String, check.Boolean])(1))
// => Error: Expected 1 to have tag String, or 1 to have tag Boolean







core.check can also be used for validating data structures without
crashing the process. All contracts return a Validation(Violation, α)
result. One can then use the cata()
operation on the data.validation.Validation object to deal with the
result of the operation:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

	function logString(a) {
  return check.String(a).cata({
    Failure: function(error){ return 'Not a string: ' + a },
    Success: function(value){ return 'String: ' + value }
  })
}

logString(1)
// => 'Not a string: 1'

logString('foo')
// => 'String: foo'










Dependent validations


Value()


	
core.check.Value(expected)

	α → (α → Validation(Violation, α))





An interface that matches the given value by structural equality.








Identity()


	
core.check.Identity(expected)

	α → (α → Validation(Violation, α))





An interface that matches the given value by reference equality.










Higher-order validations


Or()


	
core.check.Or(interfaces)

	



	Returns:	An interface that matches any of the given interfaces.





Array(α → Validation(Violation, α)) → α → Validation(Violation, α)












And()


	
core.check.And(interfaces)

	



	Returns:	An interface that matches only if all of the given interfaces match.





Array(α → Validation(Violation, α)) → α → Validation(Violation, α)












Seq()


	
core.check.Seq(interfaces)

	



	Returns:	An interface that matches an N-Tuple with the given interfaces.





Array( α₁ → Validation<Violation, α₁)
     , α₂ → Validation(Violation, α₂)
     , ...
     , αₙ → Validation(Violation, αₙ)>
→ Array(α₁, α₂, ..., αₙ)
→ Validation(Violation, Array(α₁, α₂, ..., αₙ))












ArrayOf()


	
core.check.ArrayOf(interface)

	



	Returns:	An interface that matches an Array with values matching the given interface.





(α → Validation(Violation, α)) → α → Validation(Violation, α)












ObjectOf()


	
core.check.ObjectOf(aPattern)

	



	Returns:	An interface that matches an Object with the exact key/type mapping given.





Object(Validation(Violation, Any)) → Object(Any) → Validation(Violation, Object(Any))














Primitive validations


Null()


	
core.check.Null(aValue)

	Any → Validation(Violation, Any)





An interface that matches only null values.








Undefined()


	
core.check.Undefined(aValue)

	Any → Validation(Violation, Any)





An interface that matches only undefined values.








Boolean()


	
core.check.Boolean(aValue)

	Any → Validation(Violation, Any)





An interface that matches only Boolean values.








Number()


	
core.check.Number(aValue)

	Any → Validation(Violation, Any)





An interface that matches only Number values.








String()


	
core.check.String(aValue)

	Any → Validation(Violation, Any)





An interface that matches only String values.








Function()


	
core.check.Function(aValue)

	Any → Validation(Violation, Any)





An interface that matches only Function values.








Array()


	
core.check.Array(aValue)

	Any → Validation(Violation, Any)





An interface that matches only Array values.








Object()


	
core.check.Object(aValue)

	Any → Validation(Violation, Any)





An interface that matches only Object values.








Any()


	
core.check.Any(aValue)

	Any → Validation(Violation, Any)





An interface that matches any values.










Types and structures


Violation


	
class core.check.Violation

	type Violation = Tag(String, Any)
               | Equality(Any, Any)
               | Identity(Any, Any)
               | Any(Array(Any))
               | All(Array(Any))

implements
  Equality, Extractor, Reflect, Cata, Semigroup, ToString





Represents a violation of an interface’s constraint.

+










Validating interfaces


assert()


	
core.check.assert(aValidation)

	



	Returns:	The value, if no violations exist.




	Raises:	
	TypeError - If any violation exists.









Validation(Violation, α) → α :: throws




















          

      

      

    

  

  
    
    
    Type: Violation
    
    

    
 
  
  

    
      
          
            
  
Type: Violation


	
class core.check.Violation

	type Violation = Tag(String, Any)
               | Equality(Any, Any)
               | Identity(Any, Any)
               | Any(Array(Any))
               | All(Array(Any))

implements
  Equality, Extractor, Reflect, Cata, Semigroup, ToString





Represents a violation of an interface’s constraint.






Combining


#concat()


	
Violation.prototype.concat(aViolation)

	



	Returns:	A Violation with the contents combined.





@Violation => Violation → Boolean





Combines the contents of two Violations.










Comparison and testing


#isTag


	
Violation.prototype.isTag

	@Violation => Boolean





true is the Violation has a Tag tag.








#isEquality


	
Violation.prototype.isEquality

	@Violation => Boolean





true is the Violation has an Equality tag.








#isIdentity


	
Violation.prototype.isIdentity

	@Violation => Boolean





true is the Violation has an Identity tag.








#isAny


	
Violation.prototype.isAny

	@Violation => Boolean





true is the Violation has an Any tag.








#isAll


	
Violation.prototype.isAll

	@Violation => Boolean





true is the Violation has an All tag.








#equals()


	
Violation.prototype.equals(aViolation)

	



	Returns:	true if both Violations have the same contents (by reference equality).





@Violation => Violation → Boolean














Converting


#toString()


	
Violation.prototype.toString()

	



	Returns:	A textual representation of the Violation.





@Violation => Violation → Boolean














Transforming


#cata()


	
Violation.prototype.cata(aPattern)

	



	Returns:	The result of applying the right transformation to the Violation.





@Violation => { r | Pattern } → β
where type Pattern {
  Tag: (String, Any) → β,
  Equality: (Any, Any) → β,
  Identity: (Any, Any) → β,
  Any: Array(Any) → β,
  All: Array(Any) → β
}





Provides a crude form of pattern matching over the Violation ADT. Since
Violation also implements the Extractor interface, you may choose to
use the Sparkler Sweet.js macro instead for a more powerful form of
pattern matching.













          

      

      

    

  

  
    
    
    Module: core.inspect
    
    

    
 
  
  

    
      
          
            
  
Module: core.inspect





	Stability:	3 - Stable


	Bug Tracker:	https://github.com/folktale/core.inspect/issues


	Version:	1.0.3


	Repository:	https://github.com/folktale/core.inspect


	Portability:	Portable


	npm package:	core.inspect





Any → String





Human-readable representations for built-in and custom objects.


Loading

Require the core.inspect package, after installing it:

var inspect = require('core.inspect')





The module itself is a specialised form of core.inspect.show() that
has a limited maxDepth:

	1
2

	inspect([1, [2, [3, [4, [5, [6]]]]]])
// => '[1, [2, [3, [4, [5, (...)]]]]]'










Why?

Some objects provide a custom representation, some do not. You usually want
to see the custom textual representation if an object has it, since just
showing its own properties might not give you enough information about it,
or might not be as easy to read. But you also want to represent objects that
don’t have a custom representation as something more useful than [object
Object]. core.inspect solves this problem.

Consider a simple custom type representing a point in a 2d plane:

	1
2
3
4
5
6
7
8

	function Point2d(x, y) {
  this.x = x;
  this.y = y;
}

Point2d.prototype.toString = function() {
  return 'Point2d(' + this.x + ', ' + this.y + ')'
}







If one wants to print a textual representation of this type, they’d call
Point2d.toString():

	1
2
3

	var p1 = new Point2d(10, 20);
p1.toString()
// => (String) "Point2d(10, 20)"







But what if you don’t know if the object you’re dealing with has a custom
textual representation or not? In that case, you’d usually try to just
display its properties:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18

	var Maybe = require('data.maybe');

var player = {
  lastPosition: Maybe.Nothing(),
  currentPosition: Maybe.Just(new Point2d(10, 20))
}

player

// => {
//      "lastPosition": {},
//      "currentPosition": {
//        "value": {
//          "x": 10,
//          "y": 20
//        }
//      }
//    }







In this example we have no way of knowing that lastPosition contains a
Maybe.Nothing value, or that currentPosition is wrapped in a
Maybe.Just. A more informative description would be what
core.inspect gives you:

	1
2
3
4

	var show = require('core.inspect');

show(player);
// => '{"lastPosition": Maybe.Nothing, "currentPosition": Maybe.Just(Point2d(10, 20))}'










Uncategorised


show()


	
core.inspect.show(maxDepth, value)

	



	Returns:	A human-readable representation of the value.





Number → Any → String





Provides a human-readable representation of built-in values, and custom
values implementing the ToString interface.













          

      

      

    

  

  
    
    
    Module: core.lambda
    
    

    
 
  
  

    
      
          
            
  
Module: core.lambda





	Stability:	3 - Stable


	Bug Tracker:	https://github.com/folktale/core.lambda/issues


	Version:	1.0.0


	Repository:	https://github.com/folktale/core.lambda


	Portability:	Portable


	npm package:	core.lambda





Core combinators and higher-order functions.


Loading

Require the core.lambda package, after installing it:

var lambda = require('core.lambda')








Why?

Functional programming places heavy emphasis in composition (specially
function composition), but JavaScript lacks built-in functionality for
composing and transforming functions in order to compose
them. core.lambda fills this gap by providing tools for composing
functions, altering the shape of a function in order to compose them in
different ways, and currying/uncurrying.




Uncategorised


identity()


	
core.lambda.identity(a)

	



	Returns:	The argument it’s given.





α → α





The identity combinator. Always returns the argument it’s given.

+








constant()


	
core.lambda.constant(a, b)

	



	Returns:	The first argument it’s given.





α → β → α





The constant combinator. Always returns the first argument it’s given.

+








apply()


	
core.lambda.apply(f, a)

	



	Returns:	The result of applying f to a.





(α → β) → α → β





Applies a function to an argument.

+








flip()


	
core.lambda.flip(f)

	



	Returns:	The function f with parameters inverted.





(α → β → γ) → (β → α → γ)





Inverts the order of the parameters of a binary function.

+








compose()


	
core.lambda.compose(f, g)

	



	Returns:	A composition of f and g.





(β → γ) → (α → β) → (α → γ)





Composes two functions together.

+








curry()


	
core.lambda.curry(n, f)

	



	Returns:	A curried version of f, up to n arguments.





ₙ:Number → (α₁, α₂, ..., αₙ → β) → (α₁ → α₂ → ... → αₙ → β)





Transforms any function on tuples into a curried function.

+








spread()


	
core.lambda.spread(f, xs)

	



	Returns:	The result of applying the function f to arguments xs.





(α₁ → α₂ → ... → αₙ → β) → (#[α₁, α₂, ..., αₙ] → β)





Applies a list of arguments to a curried function.

+








uncurry()


	
core.lambda.uncurry(f)

	



	Returns:	A function on tuples.





(α₁ → α₂ → ... → αₙ → β) → (α₁, α₂, ..., αₙ → β)





Transforms a curried function into a function on tuples.

+








upon()


	
core.lambda.upon(f, g)

	



	Returns:	A binary function f with arguments transformed by g.





(β → β → γ) → (α → β) → (α → α → γ)





Applies an unary function to both arguments of a binary function.

+
















          

      

      

    

  

  
    
    
    Function: identity
    
    

    
 
  
  

    
      
          
            
  
Function: identity


	
core.lambda.identity(a)

	



	Returns:	The argument it’s given.





α → α





The identity combinator. Always returns the argument it’s given.






Examples

	1
2

	identity(3)          // => 3
identity([1])        // => [1]













          

      

      

    

  

  
    
    
    Function: constant
    
    

    
 
  
  

    
      
          
            
  
Function: constant


	
core.lambda.constant(a, b)

	



	Returns:	The first argument it’s given.





α → β → α





The constant combinator. Always returns the first argument it’s given.






Examples

	1
2

	constant(3)(2)               // => 3
constant('foo')([1])         // => 'foo'













          

      

      

    

  

  
    
    
    Function: apply
    
    

    
 
  
  

    
      
          
            
  
Function: apply


	
core.lambda.apply(f, a)

	



	Returns:	The result of applying f to a.





(α → β) → α → β





Applies a function to an argument.






Examples

	1
2

	var inc = function(a){ return a + 1 }
apply(inc)(3)        // => 4







apply can be used, together with core.lambda.flip() in higher order
functions when mapping over a collection, if you want to apply them to some
constant argument:

	1
2
3
4
5
6
7
8

	var fns = [
  function(a){ return a + 2 },
  function(a){ return a - 2 },
  function(a){ return a * 2 },
  function(a){ return a / 2 }
]

fns.map(flip(apply)(3)) => [5, 1, 6, 1.5]













          

      

      

    

  

  
    
    
    Function: flip
    
    

    
 
  
  

    
      
          
            
  
Function: flip


	
core.lambda.flip(f)

	



	Returns:	The function f with parameters inverted.





(α → β → γ) → (β → α → γ)





Inverts the order of the parameters of a binary function.






Examples

	1
2
3
4

	var subtract = function(a){ return function(b){ return a - b }}

subtract(3)(2)               // => 1
flip(subtract)(3)(2)         // => -1







Flip can be used to partially apply the second argument in a binary curried
function. It makes it much easier to create new functionality, by just applying
functions, rather than explicitly creating new ones:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

	var divide = curry(2, function(a, b) {
  return a / b
})

var dividedBy = curry(2, function(a, b) {
  return b / a
})

var dividedBy5 = function(a) {
  return divide(a, 5)
}

// Instead you could write:
var dividedBy  = flip(divide)
var dividedBy5 = dividedBy(5)













          

      

      

    

  

  
    
    
    Function: compose
    
    

    
 
  
  

    
      
          
            
  
Function: compose


	
core.lambda.compose(f, g)

	



	Returns:	A composition of f and g.





(β → γ) → (α → β) → (α → γ)





Composes two functions together.






Examples

	1
2
3
4

	function inc(a){ return a + 1 }
function square(a){ return a * a }

compose(inc)(square)(2)      // => inc(square(2)) => 5













          

      

      

    

  

  
    
    
    Function: curry
    
    

    
 
  
  

    
      
          
            
  
Function: curry


	
core.lambda.curry(n, f)

	



	Returns:	A curried version of f, up to n arguments.





ₙ:Number → (α₁, α₂, ..., αₙ → β) → (α₁ → α₂ → ... → αₙ → β)





Transforms any function on tuples into a curried function.






Examples

	1
2
3
4
5
6
7

	function sub3(a, b, c){ return a - b - c }

curry(3, sub3)(5)(2)(1)      // => 2
curry(3, sub3)(5, 2)(1)      // => 2
curry(3, sub3)(5)(2, 1)      // => 2
curry(3, sub3)(5, 2, 1)      // => 2
curry(3, sub3)(5, 2, 1, 0)   // => TypeError: 2 is not a function













          

      

      

    

  

  
    
    
    Function: spread
    
    

    
 
  
  

    
      
          
            
  
Function: spread


	
core.lambda.spread(f, xs)

	



	Returns:	The result of applying the function f to arguments xs.





(α₁ → α₂ → ... → αₙ → β) → (#[α₁, α₂, ..., αₙ] → β)





Applies a list of arguments to a curried function.






Examples

var add = curry(2, function(a, b){ return a + b })

spread(add)([3, 2])  // => add(3)(2) => 5











          

      

      

    

  

  
    
    
    Function: uncurry
    
    

    
 
  
  

    
      
          
            
  
Function: uncurry


	
core.lambda.uncurry(f)

	



	Returns:	A function on tuples.





(α₁ → α₂ → ... → αₙ → β) → (α₁, α₂, ..., αₙ → β)





Transforms a curried function into a function on tuples.






Examples

var add = function(a){ return function(b){ return a + b }}

uncurry(add)(3, 2)   // => add(3)(2) => 5











          

      

      

    

  

  
    
    
    Function: upon
    
    

    
 
  
  

    
      
          
            
  
Function: upon


	
core.lambda.upon(f, g)

	



	Returns:	A binary function f with arguments transformed by g.





(β → β → γ) → (α → β) → (α → α → γ)





Applies an unary function to both arguments of a binary function.






Examples

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22

	// Sorting an array of pairs by the first component
var curry = require('core.lambda').curry

var xss = [[1, 2], [3, 1], [-2, 4]]

function compare(a, b) {
  return a < b?     -1
  :      a === b?    0
  :      /* a> b */  1
}

function first(xs) {
  return xs[0]
}

function sortBy(f, xs) {
  return xs.slice().sort(f)
}

var compareC = curry(2, compare)

sortBy(upon(compareC, first), xss)  // => [[-2, 4], [1, 2], [3, 1]]













          

      

      

    

  

  
    
    
    Module: core.operators
    
    

    
 
  
  

    
      
          
            
  
Module: core.operators





	Stability:	3 - Stable


	Bug Tracker:	https://github.com/folktale/core.operators/issues


	Version:	1.0.0


	Repository:	https://github.com/folktale/core.operators


	Portability:	Portable


	npm package:	core.operators





Provides JS operators as curried functions.


Loading

Require the core.operators package, after installing it:

var operators = require('core.operators')








Why?

JavaScript’s operators are not first-class functions, so using them in a
higher-order function requires one to wrap the call at the call-site:

	1
2
3
4
5
6
7

	var people = [
  { name: 'Bob', age: 14 },
  { name: 'Alice', age: 12 }
]

people.map(function(person){ return person.name })
// => ['Bob', 'Alice']







This defeats some of the compositional nature of functional
programming. This module provides first-class, curried versions of these
special operators that you can combine with the usual function composition
operations:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

	var op = require('core.operators')
people.map(op.get('name'))
// => ['Bob', 'Alice']

function compare(a, b) {
  return a > b?    1
  :      a === b?  0
  :   /* a < b */ -1
}

var lambda = require('core.lambda')
people.sort(lambda.upon(compare, op.get('age'))).map(op.get('name'))
// => ['Alice', 'Bob']










Arithmetic


add()


	
core.operators.add(a, b)

	Number → Number → Number





JavaScript’s addition (a + b) operator.








subtract()


	
core.operators.subtract(a, b)

	Number → Number → Number





JavaScript’s subtraction (a - b) operator.








divide()


	
core.operators.divide(a, b)

	Number → Number → Number





JavaScript’s division (a / b) operator.








multiply()


	
core.operators.multiply(a, b)

	Number → Number → Number





JavaScript’s multiplication (a * b) operator.








modulus()


	
core.operators.modulus(a, b)

	Number → Number → Number





JavaScript’s modulus (a % b) operator.








negate()


	
core.operators.negate(a)

	Number → Number





JavaScript’s unary negation (-a) operator.








increment()


	
core.operators.increment(a)

	Number → Number





Short for add(1)(a).








decrement()


	
core.operators.decrement(a)

	Number → Number





Short for subtract(a)(1).










Bitwise


bitNot()


	
core.operators.bitNot(a)

	Int → Int





Bitwise negation (~a)








bitAnd()


	
core.operators.bitAnd(a, b)

	Int → Int → Int





Bitwise intersection (a & b)








bitOr()


	
core.operators.bitOr(a, b)

	Int → Int → Int





Bitwise union (a | b)








bitXor()


	
core.operators.bitXor(a, b)

	Int → Int → Int





Bitwise exclusive union (a ^ b)








bitShiftLeft()


	
core.operators.bitShiftLeft(a, b)

	Int → Int → Int





Bitwise left shift (a << b)








bitShiftRight()


	
core.operators.bitShiftRight(a, b)

	Int → Int → Int





Sign-propagating bitwise right shift (a >> b)








bitUnsignedShiftRight()


	
core.operators.bitUnsignedShiftRight(a, b)

	Int → Int → Int





Zero-fill bitwise right shift (a >>> b)










Logical


not()


	
core.operators.not(a)

	Boolean → Boolean





Logical negation (!a).








and()


	
core.operators.and(a, b)

	Boolean → Boolean → Boolean





Logical conjunction (a && b).








or()


	
core.operators.or(a, b)

	Boolean → Boolean → Boolean





Logical disjunction (a || b).










Relational


equal()


	
core.operators.equal(a, b)

	α → α → Boolean





Strict reference equality (a === b).








notEqual()


	
core.operators.notEqual(a, b)

	α → α → Boolean





Strict reference inequality (a !== b).








greaterThan()


	
core.operators.greaterThan(a, b)

	α → α → Boolean





Greater than (a > b).








greaterThanOrEqualTo()


	
core.operators.greaterThanOrEqualTo(a, b)

	α → α → Boolean





Greater than or equal to (a >= b).








lessThan()


	
core.operators.lessThan(a, b)

	α → α → Boolean





Less than (a < b).








lessThanOrEqualTo()


	
core.operators.lessThanOrEqualTo(a, b)

	α → α → Boolean





Less than or equal to (a <= b).










Special


get()


	
core.operators.get(key, object)

	String → Object → α | Undefined





Property accessor (object[key]).








has()


	
core.operators.has(key, object)

	String → Object → Boolean





Tests the existence of a property in an object (key in object).








isInstance()


	
core.operators.isInstance(constructor, a)

	Function → Object → Boolean





Instance check (a instanceof constructor).








create()


	
core.operators.create(constructor, ...args)

	(new(α₁, α₂, ..., αₙ) → β) → (α₁, α₂, ..., αₙ) → β)





Constructs new objects (new constructor(...args))








typeOf()


	
core.operators.typeOf(a)

	α → String





Returns the internal type of the object (typeof a)








classOf()


	
core.operators.classOf(a)

	α → String





Returns the internal [[Class]] of the object.













          

      

      

    

  

  
    
    
    Module: control.monads
    
    

    
 
  
  

    
      
          
            
  
Module: control.monads





	Stability:	1 - Experimental


	Bug Tracker:	https://github.com/folktale/control.monads/issues


	Version:	0.6.0


	Repository:	https://github.com/folktale/control.monads


	Portability:	Portable


	npm package:	control.monads





Common monadic combinators and sequencing operations.


Loading

Require the control.monads package, after installing it:

var monads = require('control.monads')








Uncategorised


sequence()


	
control.monads.sequence(type, monads)

	



	Returns:	A monad containing an array of the values.





m:Monad(_) => m → Array(m(α)) → m(Array(α))












mapM()


	
control.monads.mapM(type, transformation, values)

	



	Returns:	A monad containing an array of the values.





m:Monad(_) => m → (α → m(β)) → Array(α) → m(Array(β))





Converts each value into a monadic action, then evaluates such
actions, left to right, and collects their results.








compose()


	
control.monads.compose(f, g, value)

	



	Returns:	A composition of the given functions on monads.





m:Monad(_) => (α → m(β)) → (β → m(γ)) → α → m(γ)





Left-to-right Kleisi composition of monads.








rightCompose()


	
control.monads.rightCompose(f, g, value)

	



	Returns:	A composition of the given functions on monads.





m:Monad(_) => (β → m(γ)) → (α → m(β)) → α → m(γ)





Right-to-left Kleisi composition of monads.








join()


	
control.monads.join(monad)

	



	Returns:	The nested monad.





m:Monad(_) => m(m(α)) → m(α)





Removes one level of nesting for a nested monad.








filterM()


	
control.monads.filterM(type, predicate, values)

	



	Returns:	An array with values that pass the predicate, inside a monad.





m:Monad(_) => m → (α → m(Boolean)) → Array(α) → m(Array(α))





Filters the contents of an array with a predicate returning a
monad.








liftM2()


	
control.monads.liftM2(transformation, monad1, monad2)

	



	Returns:	The transformed value inside a monad.





m:Monad(_) => (α, β → γ) → m(α) → m(β) → m(γ)





Promotes a regular binary function to a function over monads.








liftMN()


	
control.monads.liftMN(transformation, values)

	



	Returns:	The transformed value inside a monad.





m:Monad(_) => (α₁, α₂, ..., αₙ → β)
            → Array(m(α₁), m(α₂), ..., m(αₙ))
            → m(β) :: throws





Promotes a regular function of arity N to a function over monads.










Curried methods


concat()


	
control.monads.concat(left, right)

	



	Returns:	A new semigroup with the values combined.





s:Semigroup(_) => s(α) → s(α) → s(α)





Concatenates two semigroups.








empty()


	
control.monads.empty()

	



	Returns:	A new empty semigroup.





s:Semigroup(_) => s → s(α)












map()


	
control.monads.map(transformation, functor)

	



	Returns:	A functor with its contents transformed by f.





f:Functor(_) => (α → β) → f(α) → f(β)





Maps over a functor instance.








of()


	
control.monads.of(value, type)

	



	Returns:	A new applicative instance containing the given value.





f:Applicative(_) => α → f → f(α)





Constructs a new applicative intance.








ap()


	
control.monads.ap(transformation, applicative)

	



	Returns:	A new applicative with values transformed by the receiver.





f:Applicative(_) => f(α → β) → f(α) → f(β)





Applies the function of an Applicative to the values of another Applicative.








chain()


	
control.monads.chain(transformation, monad)

	



	Returns:	A new monad as transformed by the function.





c:Chain(_) => (α → c(β)) → c(α) → c(β)





Transforms the values of a monad into a new monad.













          

      

      

    

  

  
    
    
    Module: control.async
    
    

    
 
  
  

    
      
          
            
  
Module: control.async





	Stability:	1 - Experimental


	Bug Tracker:	https://github.com/folktale/control.async


	Version:	0.5.1


	Repository:	https://github.com/folktale/control.async


	Portability:	Portable


	npm package:	control.async





Task(_, _) → AsyncModule





Operations for asynchronous control flow.


Loading

Require the control.async package, after installing it, and give it a
valid data.task.Task object to instantiate it:

	1
2

	var Task = require('data.task')
var Async = require('control.async')(Task)










Combining tasks


parallel()


	
control.async.parallel(tasks)

	



	Returns:	A task that runs the given ones in parallel.





Array(Task(α, β)) → Task(α, Array(β))





Resolves all tasks in parallel, and collects their results.








nondeterministicChoice()


	
control.async.nondeterministicChoice(tasks)

	



	Returns:	A task that selects the first task to resolve.





Array(Task(α, β)) → Task(α, Maybe(β))





Runs all tasks in parallel, selects the first one to
either succeed or fail.








choice()


	
control.async.choice(tasks)

	Array(Task(α, β)) → Task(α, Maybe(β))





Alias for nondeterministicChoice()








tryAll()


	
control.async.tryAll(tasks)

	Array(Task(α, β)) → Task(Array(α), Maybe(β))





Creates a task that succeeds if one task succeeds, or fails
if all of them fail.










Converting


lift()


	
control.async.lift(function)

	(α₁, α₂, ..., αₙ, (β → Unit)) → (α₁, α₂, ..., αₙ → Task(Unit, β))





Converts a function that takes a simple continuation to a Task.








liftNode()


	
control.async.liftNode(function)

	(α₁, α₂, ..., αₙ, (β, γ → Unit)) → (α₁, α₂, ..., αₙ → Task(β, γ))





Converts a function that takes a Node-style continuation to a Task.








toNode()


	
control.async.toNode(task)

	Task(α, β) → (α | null, β | null → Unit)





Converts a Task to a Node-style function.








fromPromise()


	
control.async.fromPromise(promise)

	Promise(α, β) → Task(α, β)





Converts a Promises/A+ to a Task.








toPromise()


	
control.async.toPromise(constructor, task)

	PromiseConstructor → Task(α, β) → Promise(α, β)

type PromiseConstructor = new((α → Unit), (β → Unit) → Unit)
                        → Promise(α, β)





Converts from Task to Promises/A+.


Note

Do note that nested Tasks, unlike Promises/A+, are NOT
flattened. You need to manually call control.monads.join()
until you get to the value itself, if you care about passing
just the value.












Error handling


catchOnly()


	
control.async.catchOnly(filter, task)

	(γ → Boolean) → Task(α, β) :: throws(γ) → Task(α | γ, β)





Reifies some errors thrown by the computation to a rejected task.

+








catchAllPossibleErrors()


	
control.async.catchAllPossibleErrors(task)

	Task(α, β) :: throws(Any) → Task(Any, β)





Reifies all errors thrown by the computation to a rejected task.

+










Timers


delay()


	
control.async.delay(milliseconds)

	



	Returns:	A Task that succeeds after N milliseconds.





Number → Task(Unit, Number)





Constructs a Task that always succeeds after at least N milliseconds.
The value of the Task will be the delta from the time of its
initial execution to the time it gets resolved.








timeout()


	
control.async.timeout(milliseconds)

	



	Returns:	A Task that always fails after N milliseconds.





Number → Task(TimeoutError, Unit)





Constructs a Task that always fails after at least N milliseconds.










Transforming


memoise()


	
control.async.memoise(task)

	Task(α, β) → Task(α, β)





Caches the result of a Task, to avoid running the same task
again for idempotent or pure tasks.
















          

      

      

    

  

  
    
    
    catchOnly
    
    

    
 
  
  

    
      
          
            
  
catchOnly


	
control.async.catchOnly(filter, task)

	(γ → Boolean) → Task(α, β) :: throws(γ) → Task(α | γ, β)





Reifies some errors thrown by the computation to a rejected task.

Ideally you wouldn’t care about reifying errors thrown by synchronous
computations, but this might come in handy for some lifted computations.









          

      

      

    

  

  
    
    
    catchAllPossibleErrors
    
    

    
 
  
  

    
      
          
            
  
catchAllPossibleErrors


	
control.async.catchAllPossibleErrors(task)

	Task(α, β) :: throws(Any) → Task(Any, β)





Reifies all errors thrown by the computation to a rejected task.

Ideally you wouldn’t care about reifying errors thrown by synchronous
computations, but this might come in handy for some lifted computations.


Warning

Special care should be taken when using this method, since it’ll reify
*ALL* errors (for example, OutOfMemory errors, StackOverflow errors,
...), and it can potentially lead the whole system to an unstable
state. The catchOnly() function is favoured over this one, since
you can decide which errors should be caught and reified in the task,
and have all the others crash the process as expected.











          

      

      

    

  

  
    
    
    Module: data.either
    
    

    
 
  
  

    
      
          
            
  
Module: data.either





	Stability:	3 - Stable


	Bug Tracker:	https://github.com/folktale/data.either/issues


	Version:	1.2.0


	Repository:	https://github.com/folktale/data.either


	Portability:	Portable


	npm package:	data.either





A structure for disjunctions (e.g.: computations that may fail).

The Either(α, β) structure represents the logical disjunction between
α and β. In other words, Either may contain either a value of
type α, or a value of type β, at any given time, and it’s possible
to know which kind of value is contained in it.

This particular implementation is biased towards right values (β), thus
common projections (e.g.: for the monadic instance) will take the right
value over the left one.


Loading

Require the data.either package, after installing it:

var Either = require('data.either')





This gives you back an data.either.Either object.




Why?

A common use of this structure is to represent computations that may fail
when you want to provide additional information on the failure. This can
force failures and their handling to be explicit, avoiding the problems
associated with throwing exceptions: non locality, abnormal exits,
unintended stack unwinding, etc.




Additional resources


	A Monad in Practicality: First-Class Failures [http://robotlolita.me/2013/12/08/a-monad-in-practicality-first-class-failures.html] —
A tutorial showing how the Either data structure can be used to model failures.






Types and structures


Either


	
class data.either.Either

	type Either(α, β) = Left(α) | Right(β)

implements
  Applicative(β), Functor(β), Chain(β), Monad(β), ToString





Represents the logical disjunction between α and β.

+
















          

      

      

    

  

  
    
    
    Type: Either
    
    

    
 
  
  

    
      
          
            
  
Type: Either


	
class data.either.Either

	type Either(α, β) = Left(α) | Right(β)

implements
  Applicative(β), Functor(β), Chain(β), Monad(β), ToString





Represents the logical disjunction between α and β.






Comparing and testing


#isLeft


	
Either.prototype.isLeft

	Boolean





True if the Either(α, β) contains a Left value.








#isRight


	
Either.prototype.isRight

	Boolean





True if the Either(α, β) contains a Right value.








#isEqual()


	
Either.prototype.isEqual(anEither)

	@Either(α, β) => Either(α, β) → Boolean





Tests if two Either(α, β) structures are equal. Compares
the contents using reference equality.










Constructing


.Left()


	
static Either.Left(value)

	α → Either(α, β)





Constructs a new Either(α, β) structure holding a
Left value. This usually represents a failure, due
to the right-bias of this structure.








.Right()


	
static Either.Right(value)

	β → Either(α, β)





Constructs a new Either(α, β) structure holding a
Right value. This usually represents a successful
value due to the right bias of this structure.








.of()


	
static Either.of(value)

	β → Either(α, β)





Creates a new Either(α, β) instance holding the
Right value β.








.fromNullable()


	
static Either.fromNullable(value)

	α | null | undefined → Either(null | undefined, α)





Constructs a new Either(α, β) structure from a nullable
type.

Takes the Left value if the value is null or
undefined. Takes the Right case otherwise.








.fromValidation()


	
static Either.fromValidation(value)

	Validation(α, β) → Either(α, β)





Constructs a new Either(α, β) structure from a
Validation(α, β) structure.










Converting


#toString()


	
Either.prototype.toString()

	@Either(α, β) => Unit → String





Returns a textual representation of the Either(α, β) structure.










Extracting


#get()


	
Either.prototype.get()

	



	Raises:	
	TypeError - If the structure has no Right value.









@Either(α, β) => Unit → β :: throws





Extracts the Right value out of the Either(α, β)
structure, if it exists.








#getOrElse()


	
Either.prototype.getOrElse(default)

	@Either(α, β) => β → β





Extracts the Right value out of the Either(α, β)
structure. If it doesn’t exist, returns a default value.








#merge()


	
Either.prototype.merge()

	@Either(α, β) => Unit → α | β





Returns whichever side of the disjunction that is present.










Transforming


#ap()


	
Either.prototype.ap(anApplicative)

	@Either(α, β → γ), f:Applicative(_) => f(β) → f(γ)





Applies the function inside the Either(α, β) structure
to another Applicative type.








#map()


	
Either.prototype.map(transformation)

	@Either(α, β) => (β → γ) → Either(α, γ)





Transforms the Right value of the Either(α, β) structure
using a regular unary function.








#chain()


	
Either.prototype.chain(transformation)

	@Either(α, β), m:Monad(_) => (β → m(γ)) → m(γ)





Transforms the Right value of the Either(α, β) structure
using an unary function over monads.








#fold()


	
Either.prototype.fold(leftTransformation, rightTransformation)

	@Either(α, β) => (α → γ), (β → γ) → γ





Applies a function to each case in the data structure.








#cata()


	
Either.prototype.cata(pattern)

	@Either(α, β) => { r | Pattern } → γ
type Pattern {
  Left: α → γ,
  Right: β → γ
}





Applies a function to each case in the data structure.








#swap()


	
Either.prototype.swap()

	@Either(α, β) => Unit → Either(β, α)





Swaps the disjunction values.








#bimap()


	
Either.prototype.bimap(leftTransformation, rightTransformation)

	@Either(α, β) => (α → γ), (β → δ) → Either(γ, δ)





Maps both sides of the disjunction.








#leftMap()


	
Either.prototype.leftMap(transformation)

	@Either(α, β) => (α → γ) → Either(γ, β)





Maps the left side of the disjunction.








#orElse()


	
Either.prototype.orElse(transformation)

	@Either(α, β) => (α → Either(γ, β)) → Either(γ, β)





Transforms the Left value into a new Either(α, β)
structure.













          

      

      

    

  

  
    
    
    Module: data.maybe
    
    

    
 
  
  

    
      
          
            
  
Module: data.maybe





	Stability:	3 - Stable


	Bug Tracker:	https://github.com/folktale/data.maybe/issues


	Version:	1.2.0


	Repository:	https://github.com/folktale/data.maybe


	Portability:	Portable


	npm package:	data.maybe





A structure for values that may not be present, or computations that
may fail.

The class models two different cases:



	Just α — represents a Maybe(α) that contains a value. α
may be any value, including null and undefined.

	Nothing — represents a Maybe(α) that has no values. Or a
failure that needs no additional information.







Loading

Require the data.maybe package, after installing it:

var Maybe = require('data.maybe')





This gives you back a data.maybe.Maybe object.




Why?

The Maybe(α) structure explicitly models the effects that are implicit
in Nullable types, thus has none of the problems associated with using
null or undefined, such as NullPointerException or TypeError:
undefined is not a function.

Common uses of this structure includes modelling values that may or may not
be present. For example, instead of having both a collection.has(a) and
collection.get(a) operation, one may have the collection.get(a)
operation return a Maybe(α) value. This avoids a problem of data
incoherence (specially in asynchronous collections, where a value may be
added between a call to .has() and .get()!).

Another common usage is for modelling functions that might fail to provide a
value. E.g.: collection.find(predicate) can safely return a Maybe(α)
instance, even if the collection allows nullable values.




Additional resources


	A Monad in Practicality: First-Class Failures [http://robotlolita.me/2013/12/08/a-monad-in-practicality-first-class-failures.html] —
A tutorial showing how the Either data structure can be used to model failures.






Types and structures


Maybe


	
class data.maybe.Maybe

	type Maybe(α) = Nothing | Just(α)

implements
  Applicative(α), Functor(α), Chain(α), Monad(α), ToString





A structure for values that may not be present, or computations
that may fail.

+
















          

      

      

    

  

  
    
    
    Type: Maybe
    
    

    
 
  
  

    
      
          
            
  
Type: Maybe


	
class data.maybe.Maybe

	type Maybe(α) = Nothing | Just(α)

implements
  Applicative(α), Functor(α), Chain(α), Monad(α), ToString





A structure for values that may not be present, or computations
that may fail.






Comparing and testing


#isNothing


	
Maybe.prototype.isNothing

	Boolean





True if the Maybe(α) structure contains a Nothing.








#isJust


	
Maybe.prototype.isJust

	Boolean





True if the Maybe(α) structure contains a Just.








#isEqual()


	
Maybe.prototype.isEqual(aMaybe)

	@Maybe(α) => Maybe(α) → Boolean





Tests if two Maybe(α) contains are similar.

Contents are checked using reference equality.










Constructing


.Nothing()


	
static Maybe.Nothing()

	Unit → Maybe(α)





Constructs a new Maybe(α) structure with an absent value.
Commonly used to represent a failure.








.Just()


	
static Maybe.Just(value)

	α → Maybe(α)





Constructs a new Maybe(α) structure that holds the single
value α. Commonly used to represent a success.








.of()


	
static Maybe.of(value)

	α → Maybe(α)





Constructs a new Maybe(α) structure that holds the single
value α.








.fromNullable()


	
static Maybe.fromNullable(value)

	α | null | undefined → Maybe(α)





Constructs a new Maybe(α) value from a nullable type.

If the value is null or undefined, returns a Nothing,
otherwise returns the value wrapped in a Just.








.fromEither()


	
static Maybe.fromEither(value)

	Either(α, β) → Maybe(β)





Constructs a new Maybe(β) from an Either(α, β) value.








.fromValidation()


	
static Maybe.fromValidation(value)

	Validation(α, β) → Maybe(β)





Constructs a new Maybe(β) from a Validation(α, β) value.










Converting


#toString()


	
Maybe.prototype.toString()

	@Maybe(α) => Unit → String





Returns a textual representation of the structure.








#toJSON()


	
Maybe.prototype.toJSON()

	@Maybe(α) => Unit → Object





Returns a JSON serialisation of the structure.










Extracting


#get()


	
Maybe.prototype.get()

	



	Raises:	
	TypeError - if the structure is a Nothing.









@Maybe(α) => Unit → α :: throws





Extracts the value out of the structure, if it exists.








#getOrElse()


	
Maybe.prototype.getOrElse(default)

	@Maybe(α) => α → α





Extracts the value out of the structure, if it exists. Otherwise
return the given default value.










Transforming


#ap()


	
Maybe.prototype.ap(anApplicative)

	@Maybe(α → β), f:Applicative(_) => f(α) → f(β)





Applies the function inside the structure to another Applicative
type.








#map()


	
Maybe.prototype.map(transformation)

	@Maybe(α) => (α → β) → Maybe(β)





Transforms the value of this structure using a regular unary
function.








#chain()


	
Maybe.prototype.chain(transformation)

	@Maybe(α), m:Monad(_) => (α → m(β)) → m(β)





Transforms the value of this structure using an unary function
over monads.








#orElse()


	
Maybe.prototype.orElse(transformation)

	@Maybe(α) => (Unit → Maybe(β)) → Maybe(β)





Transforms the failure into a new Maybe structure.








#cata()


	
Maybe.prototype.cata(aPattern)

	@Maybe(α) => { Nothing: Unit → β, Just: α → β } → β





Applies a function to each case in the data structure.













          

      

      

    

  

  
    
    
    Module: data.task
    
    

    
 
  
  

    
      
          
            
  
Module: data.task





	Stability:	3 - Stable


	Bug Tracker:	https://github.com/folktale/data.task/issues


	Version:	3.0.0


	Repository:	https://github.com/folktale/data.task


	Portability:	Portable


	npm package:	data.task





A structure for time-dependent values, providing explicit effects for
delayed computations, latency, etc.


Loading

Require the data.task package, after installing it:

var Task = require('data.task')





This gives you back a data.task.Task object.




Why?

This structure allows one to model side-effects (specially time-based ones)
explicitly, such that one can have full knowledge of when they’re dealing
with delayed computations, latency, or anything that isn’t pure or can be
computed immediately.

A common use of this structure is to replace the usual Continuation-Passing
Style [http://matt.might.net/articles/by-example-continuation-passing-style/] form of programming in order to be able to compose and sequence
time-dependent effects using the generic and powerful monadic operations.




Additional resources


	A Monad in Practicality: Controlling Time [http://robotlolita.me/2014/03/20/a-monad-in-practicality-controlling-time.html] —
A tutorial showing how Data.Task can be used to model time-dependent
values.






Types and structures


Task


	
class data.task.Task

	type Task(α, β)

new ((α → Unit), (β → Unit) → γ), (γ → Unit)

implements
  Chain(β), Monad(β), Functor(β), Applicative(β),
  Semigroup(β), Monoid(β), ToString





A structure for time-dependent values.

+
















          

      

      

    

  

  
    
    
    Type: Task
    
    

    
 
  
  

    
      
          
            
  
Type: Task


	
class data.task.Task

	type Task(α, β)

new ((α → Unit), (β → Unit) → γ), (γ → Unit)

implements
  Chain(β), Monad(β), Functor(β), Applicative(β),
  Semigroup(β), Monoid(β), ToString





A structure for time-dependent values.






Combining


#concat()


	
Task.prototype.concat(task)

	@Task(α, β) => Task(α, β) → Task(α, β)





Selects the earlier of two Tasks.










Constructing


.of()


	
static Task.of(value)

	β → Task(α, β)





Constructs a new Task containing the given successful value.








.rejected()


	
static Task.rejected(value)

	α → Task(α, β)





Constructs a new Task containing the given failure value.








.empty()


	
static Task.empty()

	Unit → Task(α, β)





Constructs a Task that will never resolve.










Transforming


#map()


	
Task.prototype.map(transformation)

	@Task(α, β) => (β → γ) → Task(α, γ)





Transforms the successful value of the Task using a regular
unary function.








#chain()


	
Task.prototype.chain(transformation)

	@Task(α, β) => (β → Task(α, γ)) → Task(α, γ)





Transforms the succesful value of the Task using a function
over monads.








#ap()


	
Task.prototype.ap(task)

	@Task(α, β → γ) => Task(α, β) → Task(α, γ)





Transforms a Task by applying the function inside this receiver.








#orElse()


	
Task.prototype.orElse(transformation)

	@Task(α, β) => (α → Task(γ, β)) → Task(γ, β)





Transforms the failure value of the Task into a new Task.








#fold()


	
Task.prototype.fold(onRejection, onSucecss)

	@Task(α, β) => (α → γ), (β → γ) → Task(δ, γ)





Applies a function to each side of the task.








#cata()


	
Task.prototype.cata(pattern)

	@Task(α, β) => { Rejected: α → γ, Resolved: β → γ } → Task(δ, γ)





Applies a function to each side of the task.








#swap()


	
Task.prototype.swap()

	@Task(α, β) => Unit → Task(β, α)





Swaps the values in the task.








#bimap()


	
Task.prototype.bimap(onRejection, onSuccess)

	@Task(α, β) => (α → γ), (β → δ) → Task(γ, δ)





Maps both sides of the task.








#rejectedMap()


	
Task.prototype.rejectedMap(transformation)

	@Task(α, β) => (α → γ) → Task(γ, β)





Maps the failure side of the task.













          

      

      

    

  

  
    
    
    Module: data.validation
    
    

    
 
  
  

    
      
          
            
  
Module: data.validation





	Stability:	3 - Stable


	Bug Tracker:	https://github.com/folktale/data.validation/issues


	Version:	1.3.0


	Repository:	https://github.com/folktale/data.validation


	Portability:	Portable


	npm package:	data.validation





A disjunction that is more appropriate for validating inputs and
aggregating failures.


Loading

Require the data.validation package, after installing it:

var Validation = require('data.validation')





This gives you back a data.validation.Validation object.




Why?

The Validation(α, β) is a disjunction that’s more appropriate for
validating inputs, and aggregating failures. It’s isomorphic to
data.either, but provides better terminology for these use cases
(Failure and Success, versus Left and Right), and allows one
to aggregate failures and successes as an Applicative Functor.




Additional resources


	A Monad in Practicality: First-Class Failures [http://robotlolita.me/2013/12/08/a-monad-in-practicality-first-class-failures.html] —
A tutorial showing how the Validation data structure can be used to model
data validations.






Types and structures


Validation


	
class data.validation.Validation

	type Validation(α, β) = Failure(α) | Success(β)

implements
  Applicative(β), Functor(β), ToString





Represents the logical disjunction between α and β.

+
















          

      

      

    

  

  
    
    
    Type: Validation
    
    

    
 
  
  

    
      
          
            
  
Type: Validation


	
class data.validation.Validation

	type Validation(α, β) = Failure(α) | Success(β)

implements
  Applicative(β), Functor(β), ToString





Represents the logical disjunction between α and β.






Comparing and testing


#isFailure


	
Validation.prototype.isFailure

	Boolean





True if the Validation(α, β) contains a Failure value.








#isSuccess


	
Validation.prototype.isSuccess

	Boolean





True if the Validation(α, β) contains a Success value.








#isEqual()


	
Validation.prototype.isEqual(aValidation)

	@Validation(α, β) => Validation(α, β) → Boolean





Tests if two Validation(α, β) structures are equal. Compares
the contents using reference equality.










Constructing


.Failure()


	
static Validation.Failure(value)

	α → Validation(α, β)





Constructs a new Validation structure holding a
Failure value.








.Success()


	
static Validation.Success(value)

	β → Validation(α, β)





Constructs a new Validation structure holding a
Success value.








.of()


	
static Validation.of(value)

	β → Validation(α, β)





Creates a new Validation instance holding the
Success value β.








.fromNullable()


	
static Validation.fromNullable(value)

	α | null | undefined → Validation(null | undefined, α)





Constructs a new Validation structure from a nullable
type.

Takes the Failure value if the value is null or
undefined. Takes the Success case otherwise.








.fromEither()


	
static Validation.fromEither(value)

	Either(α, β) → Validation(α, β)





Constructs a new Validation(α, β) structure from an
Either(α, β) structure.










Converting


#toString()


	
Validation.prototype.toString()

	@Validation(α, β) => Unit → String





Returns a textual representation of the Validation(α, β)
structure.










Extracting


#get()


	
Validation.prototype.get()

	



	Raises:	
	TypeError - If the structure has no Success value.









@Validation(α, β) => Unit → β :: throws





Extracts the Success value out of the Validation(α, β)
structure, if it exists.








#getOrElse()


	
Validation.prototype.getOrElse(default)

	@Validation(α, β) => β → β





Extracts the Success value out of the Validation(α, β)
structure. If it doesn’t exist, returns a default value.








#merge()


	
Validation.prototype.merge()

	@Validation(α, β) => Unit → α | β





Returns whichever side of the disjunction that is present.










Transforming


#ap()


	
Validation.prototype.ap(anApplicative)

	@Validation(α, β → γ), f:Applicative(_) => f(β) → f(γ)





Applies the function inside the Validation(α, β) structure
to another Applicative type, and combines failures
with a semigroup.








#map()


	
Validation.prototype.map(transformation)

	@Validation(α, β) => (β → γ) → Validation(α, γ)





Transforms the Success value of the Validation(α, β)
structure using a regular unary function.








#fold()


	
Validation.prototype.fold(leftTransformation, rightTransformation)

	@Validation(α, β) => (α → γ), (β → γ) → γ





Applies a function to each case in the data structure.








#cata()


	
Validation.prototype.cata(pattern)

	@Validation(α, β) => { r | Pattern } → γ
type Pattern {
  Failure: α → γ,
  Success: β → γ
}





Applies a function to each case in the data structure.








#swap()


	
Validation.prototype.swap()

	@Validation(α, β) => Unit → Validation(β, α)





Swaps the disjunction values.








#bimap()


	
Validation.prototype.bimap(leftTransformation, rightTransformation)

	@Validation(α, β) => (α → γ), (β → δ) → Validation(γ, δ)





Maps both sides of the disjunction.








#failureMap()


	
Validation.prototype.failureMap(transformation)

	@Validation(α, β) => (α → γ) → Validation(γ, β)





Maps the left side of the disjunction.








#orElse()


	
Validation.prototype.orElse(transformation)

	@Validation(α, β) => (α → Validation(γ, β)) → Validation(γ, β)





Transforms the Failure value into a new Validation(α, β)
structure.













          

      

      

    

  

  
    
    
    How do I...
    
    

    
 
  
  

    
      
          
            
  
How do I...





          

      

      

    

  

  
    
    
    Glossary
    
    

    
 
  
  

    
      
          
            
  
Glossary





          

      

      

    

  

  
    
    
    Python Module Index
    
    

    

 


  
  

    
      
          
            

   Python Module Index


   
   c | 
   d
   


   
     		 	

     		
       c	

     
       	[image: -]
       	
       control	
       

     
       	
       	   
       control.async	
       Operations for asynchronous control flow.

     
       	
       	   
       control.monads	
       Common monadic combinators and sequencing operations.

     
       	[image: -]
       	
       core	
       

     
       	
       	   
       core.arity	
       Restricts the arity of variadic functions.

     
       	
       	   
       core.check	
       Interface checking for JS values.

     
       	
       	   
       core.inspect	
       Human-readable representations for built-in and custom objects.

     
       	
       	   
       core.lambda	
       Core combinators and higher-order functions.

     
       	
       	   
       core.operators	
       Provides JS operators as curried functions.

     		 	

     		
       d	

     
       	[image: -]
       	
       data	
       

     
       	
       	   
       data.either	
       A structure for disjunctions (e.g.: computations that may fail).

     
       	
       	   
       data.maybe	
       A structure for values that may not be present, or computations that
may fail.

     
       	
       	   
       data.task	
       A structure for time-dependent values, providing explicit effects for
delayed computations, latency, etc.

     
       	
       	   
       data.validation	
       A disjunction that is more appropriate for validating inputs and
aggregating failures.

   



          

      

      

    

  

  
    
    
    Index
    
    

    
 
  
  

    
      
          
            

Index



 A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | J
 | L
 | M
 | N
 | O
 | R
 | S
 | T
 


A


  	
      	ap() (data.either.Either.prototype method)

      
        	(Maybe.prototype method)


        	(data.task.Task.prototype method)


        	(data.validation.Validation.prototype method)


      


  





B


  	
      	bimap() (data.either.Either.prototype method)

      
        	(data.task.Task.prototype method)


        	(data.validation.Validation.prototype method)


      


  





C


  	
      	cata() (core.check.Violation.prototype method)

      
        	(Maybe.prototype method)


        	(data.either.Either.prototype method)


        	(data.task.Task.prototype method)


        	(data.validation.Validation.prototype method)


      


      	chain() (data.either.Either.prototype method)

      
        	(Maybe.prototype method)


        	(data.task.Task.prototype method)


      


      	concat() (core.check.Violation.prototype method)

      
        	(data.task.Task.prototype method)


      


      	control.async (module)


      	control.async.catchAllPossibleErrors() (built-in function)

      
        	(in module control.async)


      


      	control.async.catchOnly() (built-in function)

      
        	(in module control.async)


      


      	control.async.choice() (in module control.async)


      	control.async.delay() (in module control.async)


      	control.async.fromPromise() (in module control.async)


      	control.async.lift() (in module control.async)


      	control.async.liftNode() (in module control.async)


      	control.async.memoise() (in module control.async)


      	control.async.nondeterministicChoice() (in module control.async)


      	control.async.parallel() (in module control.async)


      	control.async.timeout() (in module control.async)


      	control.async.toNode() (in module control.async)


      	control.async.toPromise() (in module control.async)


      	control.async.tryAll() (in module control.async)


      	control.monads (module)


      	control.monads.ap() (in module control.monads)


      	control.monads.chain() (in module control.monads)


      	control.monads.compose() (in module control.monads)


      	control.monads.concat() (in module control.monads)


      	control.monads.empty() (in module control.monads)


      	control.monads.filterM() (in module control.monads)


      	control.monads.join() (in module control.monads)


      	control.monads.liftM2() (in module control.monads)


      	control.monads.liftMN() (in module control.monads)


      	control.monads.map() (in module control.monads)


      	control.monads.mapM() (in module control.monads)


      	control.monads.of() (in module control.monads)


      	control.monads.rightCompose() (in module control.monads)


      	control.monads.sequence() (in module control.monads)


      	core.arity (module)


      	core.arity.binary() (in module core.arity)


      	core.arity.nullary() (in module core.arity)


      	core.arity.ternary() (in module core.arity)


      	core.arity.unary() (in module core.arity)


      	core.check (module)


      	core.check.And() (in module core.check)


      	core.check.Any() (in module core.check)


      	core.check.Array() (in module core.check)


      	core.check.ArrayOf() (in module core.check)


      	core.check.assert() (in module core.check)


      	core.check.Boolean() (in module core.check)


      	core.check.Function() (in module core.check)


      	core.check.Identity() (in module core.check)


      	core.check.Null() (in module core.check)


      	core.check.Number() (in module core.check)


      	core.check.Object() (in module core.check)


  

  	
      	core.check.ObjectOf() (in module core.check)


      	core.check.Or() (in module core.check)


      	core.check.Seq() (in module core.check)


      	core.check.String() (in module core.check)


      	core.check.Undefined() (in module core.check)


      	core.check.Value() (in module core.check)


      	core.check.Violation (built-in class)

      
        	(class in core.check)


      


      	core.inspect (module)


      	core.inspect.show() (in module core.inspect)


      	core.lambda (module)


      	core.lambda.apply() (built-in function)

      
        	(in module core.lambda)


      


      	core.lambda.compose() (built-in function)

      
        	(in module core.lambda)


      


      	core.lambda.constant() (built-in function)

      
        	(in module core.lambda)


      


      	core.lambda.curry() (built-in function)

      
        	(in module core.lambda)


      


      	core.lambda.flip() (built-in function)

      
        	(in module core.lambda)


      


      	core.lambda.identity() (built-in function)

      
        	(in module core.lambda)


      


      	core.lambda.spread() (built-in function)

      
        	(in module core.lambda)


      


      	core.lambda.uncurry() (built-in function)

      
        	(in module core.lambda)


      


      	core.lambda.upon() (built-in function)

      
        	(in module core.lambda)


      


      	core.operators (module)


      	core.operators.add() (in module core.operators)


      	core.operators.and() (in module core.operators)


      	core.operators.bitAnd() (in module core.operators)


      	core.operators.bitNot() (in module core.operators)


      	core.operators.bitOr() (in module core.operators)


      	core.operators.bitShiftLeft() (in module core.operators)


      	core.operators.bitShiftRight() (in module core.operators)


      	core.operators.bitUnsignedShiftRight() (in module core.operators)


      	core.operators.bitXor() (in module core.operators)


      	core.operators.classOf() (in module core.operators)


      	core.operators.create() (in module core.operators)


      	core.operators.decrement() (in module core.operators)


      	core.operators.divide() (in module core.operators)


      	core.operators.equal() (in module core.operators)


      	core.operators.get() (in module core.operators)


      	core.operators.greaterThan() (in module core.operators)


      	core.operators.greaterThanOrEqualTo() (in module core.operators)


      	core.operators.has() (in module core.operators)


      	core.operators.increment() (in module core.operators)


      	core.operators.isInstance() (in module core.operators)


      	core.operators.lessThan() (in module core.operators)


      	core.operators.lessThanOrEqualTo() (in module core.operators)


      	core.operators.modulus() (in module core.operators)


      	core.operators.multiply() (in module core.operators)


      	core.operators.negate() (in module core.operators)


      	core.operators.not() (in 